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J. Phys A: Math. Gen. 26 (1993) 212-228. Printed in the UK 

Algebraic structures for one-dimensional quasiperiodic 
systems 

Peter Kramer 
Institul @ir Theoretische Physik, Auf der Universitit Tfibingen, Morgenstelle 14, D-7400 
Tiibingen, Federal Republic of Germany 

Received 7.6 May 1992. in mal  form 2 September 1992 

Abslraet The svucture oi oetiain quasiperiodic systems is analysed and interpreted by 
algebraic means. AU systems mnsidered have a free monoid and semigroup smcture 
with n generators, as treated in the field of mmbinatorics on words. An extension h m  
free monoids to 6ee groups and their automorphisms, as treated by mmbinatorial group 
theory, applies lo a dass of iterative systems. The group S~IUC~URS yield algebraic 
relations and mnsewed quantities. Examples enmmpass the Fibonacci system and 
its generalizations. Motivated by the applications to the physics of these systems, 
homomorphisms from Ule free p u p s  into linear operators of SU(2) and SU(1, 1) 
are studied. The systems are also viewed in a geometry due to Fricke and Klein. ?he 
homomorphism 10 the group SU(1, 1) is the basis for the determination of 1D electronic 
spectra. The class lypes. their multiplication, and the mmmulator properties are given. 
The physics of lhse systems mrresponds to Ule mntinuous Scha inge r  equation. The 
quasiperiodic suuaure @ves rise lo mac1 relalions between mntinuous and discrete 
systems 

1. k e e  monoids, h e  groups and automorphisms 

Sequences like the Fibonacci or ThueMorse system may be viewed in the field of 
combinatorics on words. We refer to Lothaire [ll]: Given a (finite) set called an 
alphabet A = (zl,.. . , q,), any finite sequence formed from elements of A is called 
a word w. The set of all words is denoted by A'. The empty word e is defined by 
ew = w e  = w. If the multiplication of words is defined by concatenation, the set A' 
including the empty word becomes a free monoid and the set A+ = A* - e a free 
semigroup. A morphism C$ from a monoid A' to another monoid A" is defined by 
the properties C$(wlwz) = +(wl)C$(wZ) for any two words w,, w2 E A*. 'Ib specify 
a morphism it clearly suffices to give the images of the alphabet A. 

Given the monoid with alphabet A, one can formally introduce inverses with the 
properties 1;' : zT'q = qr;' = e . 1  < i 6 n, compare Lothaire [ll]. Now the 
alphabet is called the generating set. The free group generated from it is denoted 
by F,. We continue to call the elements of F,, words. An automorphism p is an 
invertible morphism p : F, -+ F,. The set of all automorphisms of the free group 
F,, is a group denoted by an. This group was characterized in general by Nielsen, 
see Magnus [12]. 

The Fibonacci strings may be interpreted as a particular set of words from A' 
based on an alphabet A : (q, z2).  Consider the standard local idation rule, ~ t t e n  
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214 P Kramer 

in a two-line notation as 

XI e2 

4 :  +2 q x 2  

which by iteration generates from suitable initial words the Fibonacci string. Extend 
the monoid A' to the free goup  F,. Observe that the map 4 has an inverse 

and, by extension to all words, becomes an automorphism of F,. This allows us to give 
a new interpretation of the Fibonacci chain in terms of F,: the (infinite) Fibonacci 
chain is the orb2 starting ai x l  under the positive powers of the automoiphism 4. The 
substitution matrices for all automorphisms define a homomorphism Q2 - Gl(2, Z). 

Note that substitution rules like the one for the Thue-Morse system (Lothaire 
[ll], section 22) are not invertible. This suggests a separate study of the class of 
iterative systems which form orbits under a subgroup of automorphisms of the free 
group. For all (invertible) automorphisms of F, we have the following theorem. 

7heorem (Niefsen 1918). Let F, be the free group with two generators q, y2 Let 
p(rl),p(xz) be the maps of x1,x2 under any automorphism p E F,. Then the 
commutator under p transforms as 

(3) 
p(zlx,x;lx;l) = W(X1X2Z1 - 1  x, - 1  ) i1 7fJ - 1  

where w is a word from F2. 

For a proof, it suffices to verify the theorem for the generators of Q 2  given by 
Nielsen, see Magnus [12]. In the following equation (4) we give Nielsen's generators 
P, U, U of a, along with the image of (xlxZ)-', in the notation of Magnus 1121 
and the corresponding element of Gl(2, Z):  

Nielsen and Magnus give the relations fulfilled by the generators of a,. The Fibonacci 
case equation (1) is generated as 4 = P o  U. Next consider a particular set of systems 
based on Fz: Let p be an endomorphism 
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Then p is an automorphism iff there is a function h, 

For the proof we note that the endomorphism 

=1 5 2  

P* : h(z1,zz) XI 

is inverse to p. 
For p with this property, the automorphism pn has the two-step recursion relation 

These relations follow from 

In fact it is easy to construct explicitly all the automorphisms p. They are of the 
form 

and the map to Gl(2,Z) yields 

Far applications to quasicrystals we require, in addition, that all powers be non- 
negative, hence p > 0, m - p 2 0 or m > 0, p = 0,. . . , m. This class of systems will 
be called generalized Fibonacci systems. The theorem by Nielsen applies to all these 
systems, and one easily obtains for the commutator K = Z,Z~X;~Z;' 

p ( K )  = wK-'w-' w = x ; .  (12) 

Note that for p = 0 the cnmmutator is an improper invariant, it becomes an invariant 
for pz. Clearly there is a wider class of systems, generated by powers of a ftxed 
automorphism, to which the Nielsen theorem applies. In sections 2 4  we study 
homomorphisms F2 + SU(2),F2 + SU(1, l), develop the appropriate algebra and 
geometty of these groups, and give the transformations of group elements generated 
by automorphisms from @2. In sections 5-7 we relate these structures to the physics 
of the Fibonacci and related systems. Applications in physics with this group structure 
were given in 1141, [lo] and 171, a detailed list of references is given in 111. 
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2. Classes and commutators of the group SU(1,I) 

The Lie group SU(1,l) (compare Bargmann [ 2 ] )  has as its elements all complex 2 x  2 
matrices 

det(T) = 1. (14) 

With the definition of the U(l,  1)-adjoint Q -+ Q' := MQfM, the lint set of 
conditions becomes TT' = e. Here e = esv(l,i2 is the unit element of SU( 1, l) ,  
but we shall suppress the subscript if no confusion can arise. With this adjoint, 
we shall introduce Hermitian and anti-Hermitian complex 2 x 2 matrices. The 
representation of the Lie algebra of SU(1,l) is given by all anti-Hermitian traceless 
matrices A : A = -A*,tr(A) = 0. The elements of SU(1,l) may then be witten in 
terms of two complex numbers A, p ,  Bargmann [2], as 

The two complex numbers can be expressed in terms of four real numbers according 
to X = E,, + g3, p = ti t it2. For the elements T of the group SU( 1,l) we get in 
this notation 

=Er,..; 
P 

Here the matrices, defined by U: = oI,u$ = -or,,o; = io, in terms of the Pauli 
matrices, form a basis of the traceless anti-Hermitian matrices, and oh = e. The 
decomposition of T into a (Hermitian) multiple of the unit matrix and a (anti- 
Hermitian) traceless part is 

T * ' = s ~ A  

The trace of T is a class function and may be used to characterize the classes. In 
the coordinates t,,, any matrix T determines a point on a lixed three-dimensional 
quadratic surface of R4. It can be seen from equation (16) that, for fixed class and 
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hence value e,,, the elements T correspond to the points on a (in general) two- 
dimensional quadratic surface of R3 with the metric of S0(2,1,  R). In the following 
table we characterize types of classes C by a short symbol, indexed with signs that 
characterize ranges of significant quadratic expressions in the numbers cg ,  and with 
the sign of the trace tu in front. Intervals given with round brackets exclude the 
points at the boundary. 

Symbol -I+[; .$ %NE,,) 

ic; (-1,O) (0,m) rtl 

*CO" 0 0 fl 

*c: 0 (0,m) *1 

fC++ (0,m) (0,m) il. 

The eigenvalues and standard forms for the various class types are as follows. 
Elements from iC; have two complex conjugate eigenvalues with absolute value 
smaller than 1. The single elements of iG are (&e) respectively, the elements 
from i@+ have a standard real triangular Jordan form. The last two types cannot 
be distinguished by their traces alone. The elements from rtCt have two real 
eigenvalues, one with absolute value larger than 1. 

For later applications we wish to characterize the commutator 

K(T,,T,) = T,T,T,-'T;' 

of two group elements in terms of the class type. The commutator obeys K(T2, TI) = 
K-'( T I ,  T,). 'Ib determine the class type of the commutator, it suffices to choose 
one of the group elements in a standard form. Under the replacement T - -T, 
which is well defined for any matrix group, the commutator obeys the relations 
K(-T,,T,) = K(T,,-T,) = K(T,,T,). In view of these relations, we list in the 
following table the computed class types which can arise from the commutator of 
pairs of elements chosen from the (positive) class types defined earlier: 

K(T,,T*),T*+ CY CO" c: ct 
q 1  

CY c,",c+' CO" c: c+' 
CO" CO" c," c," c," 
c"+ c,' cu" c,",cci' cy,ct+ 

Cci' cci' cu" c;, c+', *CY, t c,", *cy, icci'. 
Since the interchange of the elements yields the inverse commutator, and since the 
inverse element belongs to the Same class type, this table is symmetric with respect 
to its diagonal. Xvo elements can mmmute if one of them belongs to &Ci or if both 
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belong to the same class type. Note the selective properties given in the table: many 
types -Mot occur from commuting k e d  types, class types with negative trace appear 
only in the last entry, and the class -Ci = (-e) never occurs as a commutator. The 
group generated by all the commutators k an invariant subgroup, but must coincide 
with SU(1,l) since this group has no proper invariant subgroup except (e,-e). 

3. Fricke-Klein geometry of SU(2) 

Fbr the group SU(2) we shall introduce a particular setting which borrows ideas 
from Fricke and Klein [6]. We use an exponential parametrization and write for any 
element 

3 

g = e x p ( - i a C w ; )  
j=l 

3 

= ( m s a ) u , - i ( s i n a ) C q j u j .  
j=1 

where U, = e, the vector q is a unit vector, and where the Pauli matrices obey 

u p j  -I- ujur = 2 6 , p 0  
u p j  - uju, = 2iqjkUk. 

We shall use the scalar product corresponding to SO(3, R) in all vector computations. 
The group multiplication with these relations becomes 

3 

g1g2 = ( ~ ~ ~ l z ) ~ u - i ( ~ i n ~ l z ) ~ ~ ~ ~ j  
j=1  

cos aIZ = cos a, cos a2 - sin a1 sin a,(q1 . qz) 

(sinal,)# = (sinalcosa,)q1+(cosalsina,)~2+(sinalsina,)(q1 x$). (22) 

This multiplication has the following interpretation in R3. The vectors r~ l ,$  each 
determine a great circle on the unit sphere with an oriented, right-handed arc of 
length al,az. These two oriented arcs may be concatenated in the order first 2, 
then 1 in one of the two intersection points of the two great circles. Their join 
determines a new great circle with an oriented arc, which yields the product element 
g1g2. We stress that this construction in R3 describes the multiplication in SU(2), 
not the adjoint representation discussed later. We define g3 by 

919293 = e (23) 

and consider the spherical triangle formed by the three vectors vi, i = 1,2,3. Define 
the dual unit vectors ti, i = 1,2,3 by 

E' = E i k l ( r J k  x v')l7+ x 7 ) y .  (24) 
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The dual spherical triangle A((1,(2,<3) has edges formed by the oriented arcs 
al,a2,a3. This construction is closely related to triangle groups generated by 
reflections, as considered by Fricke and Klein [6] and later by Coxeter [SI. If cl, E 2 ,  c3 
are taken as root vectors, they generate Weyl reflections T I ,  r2, v3 in the edges of the 
first spherical triangle, 

The product rzvl generates a positive rotation with angle 2a3 and Iixpoint q3. 
This rotation is an element of the adjoint representation Ad, of SU(2) obtained 
by conjugation with the element g, see equation (34). The rotation is of finite order 
if the Coxeter condition 2a3 = 27r/p3,p3 integer, is fulfilled. We shall come back 
later to the condition of finite order. 

The mutual relations of the triple g1,g2,g3 are determined by the angles in 
the two dual triangles. These relations do not change if we conjugate all three 
group elements with another fixed group element. 'Ib characterize the triple modulo 
conjugation, we turn to the Fricke characters for SU(2). Discrete systems of traces 
for matrices from Sl(2, C) are known as Fricke characters [6]. For more recent work 
on Fricke characters compare Horowitz [SI and for homomorphisms F2 -+ Sl(2, C) 
Humphreys [9]. From the exponential parametrization we get 

which determines the m i n e  of the arc corresponding to g3. Next we consider the 
matrix Q with entries aij = (e . < j ) , i , j  = 1,2,3. Here we get the identity 
det(a) = 1+2(E'.EZ)((2.E3)(E3.E1)-(E1 .€2 )2 - (E2 .E3)2 - (€3 .E1)2  

vi : 2 - 2 - 2(2 * ? ) t i  i =  1,2,3. (25) 

(26) 1 I tr(g192) = ( E '  . €3 

1 (27) 
= -3(@(gzs1g3) - 2). 

The right-hand part of this equation, expressed by traces by use of equation (26), is 
due to Fricke and Klein [6]. This part is a mce idenfiry which relates the trace of the 
commutator K(g2,gl) to the traces of the three group elements gl,g2,g3. When 
expressed in terms of the vectors 9, it has a geometric confmf as it determines up to 
a factor the square of the volume of the tetrahedron spanned by E ' , E Z , E 3 .  

A homomorphism F2 - SU(2),SU( 1, l )  is defined in terms of images of the 
generators of F2, zI + gl,  z2 -+ g2, it implies e -+ em(2), emcl,l). In the Fricke- 
Klein geometry it determines a triple g1,g2,g3 = (glg2)-' and a corresponding 
triangle f 1 , C 2 , E 3 .  Now we determine the transformations of the mangles induced by 
fhe fhree generatom qf G2 The images of , $ ' ,EZ ,E3  under these generators may be 
linearly expressed by these vectors and by their scalar products as 

with the result 
(C" = ( E * E 2 E 3 P ( P )  (% 

D ( P ) =  -1 0 
-1 

z E ( p .  €3)  2 4 ~ 3  . €1) 1 

0 2 4 p  ' € 3 )  1 

[A [ O  -1 0 :] 
D ( u )  = 
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Here the number e takes the value e = 1 for SU(2). The transformations of equation 
(29) have a simple geometric interpretation since the vectors are permuted, inverted 
or reflected according to equation czs). When multiplying these transformations in 
each step one must transform the scalar products in each step. By use of equation 
(26), the transformations of these scalar products become recursive trace maps. 
show that these transformations represent homomorphisms from Qz, one must verify 
for the images the defining relations of the generators of Qz given by Nieken and 
by Magnus [12]. All three generators in equation (29) have a determinant k l  and 
preserve det(a). Hence by equation (27) the volume of the tetrahedron spanned by 

is a geometric invariant under the Uan$omations induced by QT We shall 
apply these transformations to the Fibonacci system in section 7. 

4. Fricke-Klein geometry of SU(1,l) 

Similar results hold for SU( 1,l) .  For the exponential parametrization we shall use 
the basis 

U ;  = U,  U; = -U2 U; = iu3 (30) 

of equation (16). 
S0(2,1,  R), they are 

The scalar and vector product correspond to the metric of 

These definitions yield the triple product of three vectors still in the form of a 
determinant, 

det(a,b,c) = ( a x  6 ) . c .  (32) 

The exponential parametrization reads 

The adjoint representation Ad, is defined by the linear transformation of the vector 
qt induced by conjugation, 

j= l  
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The adjoint representation yields a homomorphism from SU(1,l) to SO(2,1, R 1) 
which is two-to-one since Ad, = Ad-, and orfhochronous, that is obeys (Ad,), > 1. 

Consider triples of group elements from SU(1,l) obeying 

g1g2g3 = e (35) 

associate with them triples of vectors q',q2,~3 through the exponential parametriza- 
tion, and define the reciprocal triple b',b2,b3 by 

b' = e i k f ( q k  x q f ) .  (36) 

Far these triples we obtain the following properties. Far any triple of group elements 
obeying equation (35), the three vectors 6' are of two types: (i) all space-like, 
(a' . b') > 9 or (ii) all he-l ike,  (6' . bi) < 0. If we define in these two cases 

the triples ( I ,  t2,  E3 determine points and lriangles on a space-like unit hyperboloid 
or on a single timelike unit hyperboloid respectively. The arcs on the hyperboloids 
are always on intersections with a plane through the origin. We obtain the trace 
result 

3 = .(E'.  €7. (38) 

PrmJ Fbr the first part we use the fact that elements of the adjoint representation 
may be generated by paus of reflections. With the vectors b' we associate the 
reflections 

ri : z z - 2 ( z .  b')(b'. b')-'bi. (39) 

We require that the products ( d ~ ~ ) , ( r ~ ~ ~ ) , ( 7 - ~ r ' )  generate elements of the 
orthochronous part of SO(2,1, R). This condition yields the restriction (b' . b')(b2.  
b2) > 0 and similar relations for all the pairs. From the action of (r'r2) E 
S0(2,1, R 7 )  on bz according to equation (39) we obtain for the (hyperbolic) cosine 
of twice the group parameter 

If the absolute value of the expression on the left of this equation is in the range 
(0, l), it determines the cosine of twice a rotation angle. If it is in the range (1, CO), 

it determines the hyperbolic cosine of twice a hyperbolic angle. The result given in 
equation (38) is obtained by an explicit computation for . .  all representative triples. Case 
( i i ) w i t h ~ = - I a p p l i e s i f a n d o n l y i f q ' . ~ ' = l , 1 1 ) ' . q J I <  1, i , j = l , 2 , 3 , i # j .  
The time-like vectors ti are all found on a single hyperboloid. Case (i) with E = 1 

0 applies in all other cases. 
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For the matrix a with entries a i j  = (E' . E ' )  one tin& 

det(a) E e(1 + 2(<' . E ' ) ( ( ' .  ( ' ) ( E 3 .  E ' )  - ( E '  . E')' - ( 6 ' .  E3)' - ( E 3 .  E ' ) ' )  
(41) 

= -~(~(gZglg3)  - 2, 

which is a trace identity and has a similar geometric interpretation as in the case. of 

The transformations of the triangles induced by Nielsen's generators of Fz are 
&en again by equation (29), preserve the geometric invariant det(a) of equation 
(41), but have the metric of S0(2,1, R) and the values e = f l  for types (i) and (U) 

respectively. The vectors ti are permuted, inverted or reflected according to equation 
(39). We turn now to the relation between the group SU(1,l) and the Schrodinger 
equation. 

SU(2). 

5. "Meer  and scattering matrices 

The onedimensional Schrodinger equation may be written as 

(43) 
2m .(I) = +E-  V(r)). 

With $'(z) := +(I ) ,+~(z)  := d + ( z ) / d I  one obtains the fist-order system of 
linear differential equations 

This system is canonical with the Hamiltonian H = f($: + v&), but for general 
II = .(I) it corresponds to an oscillator with time-dependent frequency. The transfer 
matrix defined by the equations 

T(I,I) = e (46) 
obeys the same differential equation with respect to I as the column vector formed 
from I,~~(I),&(I). Since the matrix in equation (44) is traceless, the transfer matrix 
is unimodular and, for a real choice of the two functions, belongs to Sl(2, R). For an 
interval with V = 0 and with E = ( h z / 2 m ) k Z ,  the transfer matrix may be taken as 

1 cos k(z - d )  k-lsin k( I - E') 
P ( x , x ' )  = [ -kShk(Z-X') WSk(E-X') (47) 

We convert from this real standing wave to a complex running wave picture by 
transforming the states and the transfer matrix with the matrix 
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The new form of the transfer matrix we write as T := R T R-I, it is complex and 
belongs to the Lie group SU(1,l) = RSl(2, R)R-', a complex equivalent form of 
Sl(2, R). For V = 0 one obtains 

exp(-ik(z - z ' ) )  
exp(ik(z - z')) 

0 TO(z,z') = [ (49) 

The general transfer matrices will now admit the description and classification given 
in section 2 for the elements of SU(1,l). 

Suppose that the potential V ( z )  is non-zero only in a finite interval say (0,c) 
on RI, and consider the transfer matrix T on this interval. Given in the interval 
(-m,O) the two free solutions exp(5ikz) with complex amplitudes, the eansfer 
matrix determines the amplitudes of the two free solutions exp(fi/c(z - c ) )  in the 
interval (c,m). It follows that the scattering matrix S, which describes scattering from 
the left and from the right, is determined by T. We also refer to Borland [4] for 
this relation. Ib write the explicit connection we apply to T the Gauss factorization, 
compare b r u t  and Raczka 131, given by 

T = [ a  $1 

which yields the relations 

(52) 
--1 - - I  - - I -  

t = X  r = X  p I = - X  P .  

Here, X is always invertible. The Gauss factors do not belong to SU( 1,l) .  Now it is 
easy to show that 

.[:I = [;I T-l [;] = [!] (53) 

so that I, t are the reflection and transmission amplitudes for scattering from the left, 
and r, t are reflection and transmission amplitudes for scattering from the right. The 
scattering matrix becomes 

t exp(-ikc) rexp(-2ikc)] 
t exp( -kc )  ' (54) 

This matrix is unitary due to the fact that T E SU(1,l). The phase factors are 
required by the asymptotic form of the free states assumed in scattering, they ensure 
that V = 0 implies S = e. Computation of the scattering matrix for a product of 
transfer matrices yields the star product of S-matrices defined by Redheffer 1131. The 
transmission coefficient for scattering from the left is t = x-'. 
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6. Fibonacci systems 

The discrete Fibonacci system has the basic iterative equation 

q5"f'(xz) = p - I  (%)4n(%)~$(zi) = z 2 1 4 ( X z )  = X i + z  (55) 

which yields upon inversion 

The physical model will arise by associating with the words formed from xl ,xZ 
products of transfer matrices and thus determines a homomorphism T : F, + 
SU(f, 1) or F2 - SU(2). We shall first treat properties which apply to both groups. 
It suffices to specify the map rl -, T ( + , )  = Tl,z2 4 T(z, )  = Tz and to use 
T(wlwz) = T(wl)T(wz) .  We use the short-hand notation T, = T(4n-1(zl)). 
Using this homomorphism and adding the matrix expressions corresponding to 
equations (55) and (56) one finds 

T,+1 + Ti!* = T,-i(T, + Ti'). 

( X , Y , Z ) ( n )  = ( X ( n ) , Y ( n ) , Z ( n ) )  := (Tn-z,Tn-I,Tn) 

(57) 

If now one defines three unimodular 2 x 2 matrices 

(58) 

one gets the recursive 12-dimensional system 

We decompose any unimodular matrix as 

M = S +  A , A  = M - i t r ( M ) e  @(A) = O  S =  A4 - A. (60) 

Note the following decoupliig properties of the discrete dynamical system. The S- 
pan of the system decouples and becomes equivalent to a system of traces. The three 
coefficients in the A-part couple only to the S-part. By the theorem of Nielsen, the 
Fibonacci system has the improper matrix invariant 

K = X , X ~ X ; ~ X ; ~ .  (61) 

x3 := z1x2. (62) 

For the dynamical system, it proves convenient to introduce 

We use the decomposition T = S + A and wite T, := T ( z i )  = Si + Ai. Then one 
finds for the commutator 

T(IC*')= S * A  

S = -4S,S,S3 + 2(S1S1 + S,Sz + S3S3) - e 

A =4A,SzS3-2(SIAl - SZA2+ S3A3). 
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In the notation of the dynamical system, one obtains for the commutator 

T ( C 3 ( K ) )  = ( ( X  + X-')(n) - (Y + Y-')(n)(z+ z-')(n))xqn) 

+ (Y + ~-')(n)~*'(n) + (z+  z-')(n)zT'(n) - e .  (W 
Again, this wmmutator decouples into an S-part and an A-part whose wefficien& 
wuple only to the S-part. In view of equation (m), the S-part of equation (63) 
relates the traces. It can be interpreted in terms of the Fricke-Klein geometry of 
sections 3 and 4, equations (27) and (41) and leads to a geomem'c invanan! of the 
system. The A-part has alternating signs due to the improper invariance. 

We turn to SU(1,l) to illustrate the decoupling of the full system and write 
down the iterative equations for the diagonal element X of the transfer matrix and 
its improper invariant: 

The improper invariant part transforms in the iteration according to 

A( K) --* X( K) + A(  I<) . . . 
From the map equation (54) to the scattering matrix, the diagonal element X 
determines the forward scattering from the Fibonacci string. 

In the discrete Fibonacci system, the transfer matrix is obtained on chains of 
length increasing with the Fibonacci numbers. We now show that the continuous 
SchrGdinger equation for the transfer matrix can be rewritten as a wntinuous 12- 
dimensional dynamical system such that the discrete dynamical system appears in an 
exact relation to the wntinuous one. Tb this end we wite  the equation of motion 
for the transfer matrix in the form 

d 0 -T(x,x') = W ( x ) T ( z , x ' )  W ( x )  = R [ '1 R-' (66) dx -v(x)  0 

T(z,z) = e .  (67) 

We take the two intervals on the line with length 1, T respectively. If these intervals 
carry fixed values of the potential, and if the sequence of intervals is generated 
through equation (55), this sequence yields the symmetry 

V(z + Tn) = V ( x )  0 < z < 7 - 1 .  (68) 

The same symmetry applies to v ( x )  and to the matrix W ( x ) .  For the transfer matrix 
it follows from this symmetry and the equations of motion equation (66) that 

T(?+',T") = T ( T R - 1 , o ) .  (69) 
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Let us introduce a new real variable z and detine 

X ( z )  = T(7. 'z,rz)  

Y ( z )  = T(iX,O) 
Z ( Z )  = T(T'Z,O) = X ( L ) Y ( Z ) .  

Using the equations of motion for T(z,z') and its inverse T- l (z , z ' )  = T(z ' , z ) ,  
one obtains for the three matrices X, Y,  Z the equations of motion of a continuous 
dynamical system: 

d - X ( z )  = T'W(T'Z)X(+) - X ( . Z ) T ~ ( T Z )  dz 
d -Y(z )  = T W ( T Z ) Y ( Z )  dz 
d 

- Z ( z )  = T'W(T'Z)Z(Z).  dz 

Fbr the discrete values z = T",  it follows from equation (68) that 

x(T") = T(T"+' ,T~+')  = T(rn,O) 
Y ( T " )  = T(T"+',o) 
z ( T ~ )  = T ( T ~ + ' , O )  = X ( r " ) Y ( i n ) .  

For these value of z ,  the three matrices are seen to coincide with the matrices 
X ( n  + 1 ) , Y ( n  + l ) , Z ( n  + 1 )  of-the discrete dynamical Fibonacci matrix system. 
We conclude that the matrices of the continuous system must run, for z = T",  

through the values of the discrete system. In view of the restriction to SU(l, l) ,  
both systems have nine (group) parameters. The discrete dynamical system has the 
improper commutator invariant which provides a three-dimensional (Poincare-like) 
section for the continuous system. Note that we get an exact discrete dynamics on the 
three-dimensional sections. 

Finally we consider a particular form of the transfer matrices for the Fibonacci 
chain. Wc assume that, on both cells, the same potential with transfer matrix T(E,O)  
is followed by two intervals with potential equal to zero and with transfer matrices 
To( 1, e ) ,  To( i, E ) .  The wmmutator becomes 

K(P(1, E)T,  P(7, €)TI) = p(1, c)K(T,  P(T - L O ) ) ( ~ ( E ,  1 )  (73) 

and so is equivalent to the commutator of the free transfer matrix for an interval of 
length T - 1 with the transfer matrix for the potential. From equation (49) the fust 
matrixobeys P ( ~ - l , O ) = e f o r k ( ~ - l ) = m ~ , m E Z .  Attheseperiodicpoints 
with respect to the wavenumber IC, the commutator has the value IC = e and the 
trace 4 tr( K) = 1. Fbr all other values of k we have, in the classification of equation 
(19), P(T - 1,O) E C; so that from equation (19) li E C: or C:. It follows that 
$ tr(K) 2 1 and, for differentiable dependence of T on IC, that he periodic zeros of 
the invariant are quadrafic minima. These properties can be seen in the computed 
values of the invariant I = a(tr(K) - 2) for the special case where T represents 
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a 6-potential of strength q and hence belongs to the class type C!. For this case, 
studied in more detail in b a k e  et al [I], the table in equation (19) shows that there 
are no points K = e except the ones periodic in k. The explicit value of the invariant 
becomes 

I = ( ~ s i n k ( r - l ) ) ~  w = q / 2 k .  (74) 

The implications for the electron states and spectra on this and on generalized 
Fibonacci systems are treated in Baake et al [l]. 

7. The Fibonacci system in Fricke-Klein geometry 

An alternative geometric representation of the Fibonacci system is offered by use of 
the Fricke-Klein geometry. We start with the Fibonacci system represented in SU(2) .  
For three group elements g1,g2,g3 = g1g2 we have g1g2g;' = e. We wish to use 
for this new triple the old dual vectors E 1 , ( 2 , E 3  given in section 3. For this purpose 
we keep the same dual vectors but reverse the orientation of the arc between E1 and 
tz. With this interpretation we get a correspondence 

(75) 
n-1 n n+l 

Tn+1= Tn-ITn -t gn+l= gn-ign + A(€ E € 1. 
The Fibonacci system described by the powers +" now generates a sequence 
of dual triangles on the sphere, spanned by En-l,tn,tntl. This sequence. of 
vectors is determined by writing + = P o  U. By combining the transformations 
D ( P ) , D ( U )  from equation (29) and rearranging one finds for the present triples 
the transformation law 

with initial values E Z , t 3 , E 4  = (I. From this equation one determines for the scalar 
products the rule 

, ( p l .  En-1) = -,(p. E - 1 )  + (E". E n - Z ) ( € * .  E"- ' )  
(77) (E"+' . E n )  = ( E " .  E"-*)  n 2 4. 

which for E = 1 is equivalent to the recursive trace map of SU(2). In the new 
equations for the Rbonacci matrix system, the recursive computation employs only 
the mutual relations of matrices, independently of conjugation transformations applied 
to the initial group elements. The volume of the tetrahedron spanned by the three 
vectors is a geometric invnriant and is, through equation (27), directly related to the 
trace of the commutator in the matrix system. A special case arises if the two initial 
group elements g1,g2 belong to a finite subgroup H of SU(2). Clearly then the 
orbits under the Fibonacci system must become p e r i o d i c ,  with the period bounded by 
the order of H. 

For the Fibonacci system in the Fricke-Klein geometry of SU( 1,l) we find, under 
the conditions given in section 4, exactly the same relations equations (76) and (77), 
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but with the scalar products now corresponding to SU( 1 , l ) .  The types (i) and (ii) 
have E = Al.  Equation (77) together with equation (38) yields the recursive trace 
map. There are two d&7erenr types of wbils: (i) if all three vectors f are space- 
like, the system of triangles tuns on the single unit hyperboloid in the space-like 
region; (ii) if all three vectors t i  are time-like, the system runs on a single unit 
hyperboloid in the time-like region. In this case, the vectors 17' are all space-like. 
The system has the geometric invariant given by equation (41). If the two initial 
group elements belong to one of the discrete subgroups specified by Fricke and 
Klein 161, we expect particular properties of the orbits under the Fibonacci system. 
Again, the propagation of the triangles is independent of conjugation transformations. 
The geometric transformations for generalized Fibonacci systems and in fact for any 
automorphism from CJ* may be generated from the transformations equation (29). 
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