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Algebraic structures for one-dimensional quasiperiodic
systems
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Tibingen, Federal Republic of Germany
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Abstract. The structure of certain quasiperiodic systems is analysed and interpreted by
algebraic means. All systems considered have a free monoid and semigroup structure
with n generators, as treated in the field of combinatorics on words. An extension from
free monoids to free groups and their automorphisms, as treated by combinatorial group
theory, applies to a class of iterative systems. The group structures yield algebraic
relations and conserved quantities. Examples encompass the Fibonacci system and
its generalizations. Motivated by the applications to the physics of these systems,
homomorphisms from the free groups into linear operators of SU(2) and SU(L, 1)
are studied. The systems are also viewed in 2 geometry due to Fricke and Klein. The
homomorphism to the group SU(1, 1) is the basis for the determination of 1D electronic
spectra. The class types, their multiplication, and the commutator properties are given.
The physics of these systems corresponds to the continuous Schrédinger equation. The
quasiperiodic struciure gives rise 10 exact reiations between coniinuous and discreie
systems.

1. Free monoids, free groups and antomorphisms

Sequences like the Fibonacci or Thue-Morse system may be viewed in the field of
combinatorics on words. We refer to Lothaire [11]: Given a (finite) set called an
alphabet A = (z,,...,z,), any finite sequence formed from elements of A is called
a word w. The set of all words is denoted by A*. The empty word e is defined by
ew = we = w. If the muitiplication of words is defined by concatenation, the set A*
including the empty word becomes a free monoid and the set A* = A* — ¢ a free
semigroup. A morphism ¢ from a monoid A* to another monoid A’ is defined by
the properties ¢{w,w,) = ¢(w,;)¢(w,) for any two words w,, w, € 4*. 'Tb specify
a morphism it clearly suffices to give the images of the alphabet A.

Given the monoid with alphabet A, one can formally introduce inverses with the
properties z;! : z7le; = z;27! = e,1 < i < n, compare Lothaire [11]. Now the
alphabet is called the generating set. The free group generated from it is denoted
by F,. We continue to call the elements of F, words. An automorphism p is an
invertible morphism p: F, — F,. The set of all automorphisms of the free group
F, is a group denoted by ®,. This group was characterized in general by Nielsen,
see Magnus [12].

The Fibonacci strings may be interpreted as a particular set of words from A*
based on an alphabet A : (z;, ;). Consider the standard local inflation rule, written

0305-4470/93/020213+16$07.50 (® 1993 IOP Publishing Ltd 213



214 P Kramer
in a two-line notation as

T *

1)

Pro, TT,

which by iteration generates from suitable initial words the Fibonacci string. Extend
the monoid A* to the free group F,. Observe that the map ¢ has an inverse

1'1 1:2

@

¢'1 : 9:2::1'1 z;

and, by extension to all words, becomes an avtomorphism of F. This allows us to give
a new interpretation of the Fibonacci chain in terms of F,: the (infinite) Fibonacci
chain is the orbit starting at «, under the positive powers of the automorphism ¢. The
substitution matrices for all automorphisms define a homomorphism &, — GI(2, Z).
Note that substitution rules like the one for the Thue-Morse system (Lothaire
[11], section 2.2) are not invertible. This suggests a separate study of the class of
iterative systems which form orbits under a subgroup of automorphisms of the free
group. For all (invertible) automorphisms of F, we have the following theorem.

Theorem (Nieisen 1918). Let F, be the free group with two generators xy,y,. Let

o(z1), p{x,) be the maps of z;,x, under any automorphism p € F,. Then the
commutator under p transforms as

—1,=1y =1,-fy&l  —1
plrryx] w5 ) = w(zyzyey Y 3)
where w is a word from F,.

For a proof, it suffices to verify the theorem for the generators of ¢, given by
Nielsen, see Magnus [12]. In the following equation (4) we give Nielsen’s generators
P, ¢, U of ®, along with the image of (z,z,)"!, in the notation of Magnus [12]
and the corresponding element of GI(2, Z):

1.1 |0 1]

£ w, T2 T 1 0

@

P: 2 oz ailzyl [ 0]

o = Ty a:z_l:cl LO 1

U: z2, 2, “’2_21'1_1 é :]

Nielsen and Magnus give the relations fulfilled by the generators of ¢,. The Fibonacci
case equation (1) is generated as ¢ = PoU. Next consider a particular set of systems
based on F,: Let p be an endomorphism

Ty Tz

5
p: xy flz,2,). ©)
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Then p is an automorphism iff there is a function h,

zy 1= f@1,2y) < @ = h(@y, 25). ©)
For the proof we note that the endomorphism

o0 “ @

Pt bz, zy) T

is inverse to p.
For p with this property, the automorphism p™ has the two-step recursion relation

PnH(l‘z) = f(Pn_i(”:z),Pn(Tz))- (3)
These reiations follow from
p™ (@) = o™ H(xy)

p™l(zy) = f(p"(xy), ()
= f(p" " (z3), P (x3))- ®

In fact it is easy to construct explicitly all the automorphisms p. They are of the
form

e Iy
(109)
pL oy zhaxy P m,pe &
and the map to GI(2, Z) yields
0 1
o= 11 ] an

For applications to quasicrystals we require, in addition, that all powers be non-
negative, hence p 2 0,m —p 2 0or m > 0,p =0,...,m. This class of systems will
be called generalized Fibonacci systems. The theorem by Nieisen applies to all these
systems, and one easily obtains for the commutator K = 2,z z;"

o(K) = wkKtw™! w =, (12)

Note that for p = 0 the commutator is an improper invariant, it becomes an invariant
for p?. Clearly there is a wider class of systems, generated by powers of a fixed
automorphism, to which the Nielsen theorem applies. In sections 2-4 we study
homomorphisms F, — SU(2), F, — SU(1,1), develop the appropriate algebra and
geometry of these groups, and give the transformations of group elements generated
by automorphisms from $,. In sections 5-7 we relate these structures to the physics
of the Fibonacci and related systems. Applications in physics with this group structure
were given in [14], [10] and [7), a detailed list of references is given in [1].
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2, Classes and commutators of the group SU(1,1)

The Lie group SU(1,1) (compare Bargmann [2]) has as its elements all complex 2x 2
matrices

T:TMT =M M=M-1=[1 0} (13)

det(T) = 1. (14)

With the definition of the U(1,1)-adjoint Q@ — @Q* := MQ*M, the first set of
conditions becomes TT” = e. Here e = egy ;) is the unit element of SU(1,1),
but we shall suppress the subscript if no confusion can arise. With this adjoint,
we shall introduce Hermitian and anti-Hermitian complex 2 x 2 matrices. The
representation of the Lie algebra of SU(1,1) is given by all anti-Hermitian traceless
matrices A: A = —A*, r{ A) = 0. The elements of SU(1,1) may then be written in
terms of two complex numbers A, 4, Bargmann [2], as

A -
T:T:[H %] A —ug=1. (15)

The two complex numbers can be expressed in terms of four real numbers according
o A =&+ if;, u = & + if,. For the elements T of the group SU(1,1) we get in
this notation

T=[§u+:1f3 E1+i52]
-1y §—i6

=Z£ﬂ“£¢
#

(16)
det(T) = &5+ &5 - € - =1
I-g=6-¢§-¢
(T = &.
Here the matrices, defined by of = o},0} = —0,,0} = {5, in terms of the Pauli

matrices, form a basis of the traceless anti-Hermitian matrices, and of = e. The
decomposition of T into a (Hermitian) multiple of the unit matrix and a (anti-
Hermitian) traceless part is

TH =95+ A
S = 8" =04 (17)

3
A=A =ijaj’;.
j=1

The trace of T is a class function and may be used to characterize the classes. In
the coordinates £,, any matrix T determines a point on a fixed three-dimensional
quadratic surface of R* It can be seen from equation (16) that, for fixed class and
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hence value &, the e¢lements T correspond to the points on a (in general) two-
dimensional quadratic surface of R* with the metric of SO(2, 1, R). In the following
table we characterize types of classes C by a short symbol, indexed with signs that
characterize ranges of significant quadratic expressions in the numbers £,, and with
the sign of the trace £, in front. Intervals given with round brackets exclude the
points at the boundary.

Symbol —1+ ¢ &2 Sign(&;)

+C5 (—-1,0) (0,00) =1

+C? 0 0 +1 18)
+C 0 (0,00) 1

+CH (0,00)  (0,00) 1.

The eigenvalues and standard forms for the various class types are as follows.
Elements from +C] have two complex conjugate eigenvalues with absolute value
smaller than 1. The single elements of +C) are (Le) respectively, the elements
from +CY have a standard real triangular Jordan form. The last two types cannot
be distinguished by their traces alone. The elements from +C} have two real
eigenvalues, one with absolute value larger than 1.

For later applications we wish to characterize the commutator

K(T,,T) = LT

of two group elements in terms of the class type. The commutator obeys K (T3, T}) =
K~YT,,T;). T determine the class type of the commutator, it suffices to choose
one of the group elements in a standard form. Under the replacement T — T,
which is well defined for any matrix group, the commutator obeys the relations
K(-T),T3) = K(T1,-T,) = K(T},T;). In view of these relations, we list in the
following table the computed class types which can arise from the commutator of
pairs of elements chosen from the (positive) class types defined earlier:

K(T,T), T~ C; G C} ci
Tl
Cy cp,Cy Gy Cf cy
(19)
cy cy o e o}
cy c; ¢ anct o cc
ct ct ¢y CY,Ct, £C7,+C8,xCY,xCF.

Since the interchange of the elements vields the inverse commutator, and since the
inverse element belongs to the same class type, this table is symmetric with respect
to its diagonal. Two elements can commute if one of them belongs to +Cj or if both
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belong to the same class type. Note the selective properties given in the table: many
types cannot occur from commuting fixed types, class types with negative trace appear
only in the last entry, and the class —CJ = (—e) never occurs as a commutator. The
group generated by all the commutators is an invariant subgroup, but must coincide
with SU(1,1) since this group has no proper invariant subgroup except (e,—e).

3. Fricke-Klein geometry of SU(2)

For the group SU(2) we shall introduce a particular setting which borrows ideas
from Fricke and Klein [6]. We use an exponential parametrization and write for any
element

3
9= “P(—iazﬂiai)

i=1 20
\ (20)
= (o0s a)a, — i(sin &) Z n;0;.
j=1
where o, = e, the vector 5 is a unit vector, and where the Pauli matrices obey
O'[O'J‘ + a'jal = 26350’0

We shall use the scalar product corresponding to SO(3, R) in all vector computations.
The group multiplication with these relations becomes

3
iron 12
9192 = (05 app Joy — i(sin o) Z n; o;
=t
£0S Cxjy = €OS o, 008 ¢y — Sin @ Sin ey (! - )
(sin @, )02 = (sin o, cos a,)n' + (€08 o, sin &, )n® + (sin o, sin o,)(p! x B?). (22)

This multiplication has the following interpretation in 7% The vectors n',n? each
determine a great circle on the unit sphere with an oriented, right-handed arc of
length o, c,. These two oriented arcs may be concatenated in the order first 2,
then 1 in one of the two intersection points of the two great circles. Their join
determines a new great circle with an oriented arc, which yields the product element
g19,- We stress that this construction in R® describes the multiplication in SU(2),
not the adjoint representation discussed later. We define g, by

NG9 = e ) 23)

and consider the spherical triangle formed by the three vectors n',i = 1,2,3. Define
the dual unit vectors £*,7i = 1,2,3 by

& = eg(n® x n'Yin* x 'l )
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The dual spherical triangle A(€!,42,¢°) has edges formed by the oriented arcs
Qy, &y, 3. This construction is closely related to triangle groups generated by
reflections, as considered by Fricke and Klein [6] and later by Coxeter [5]. If ¢!, €2,&°
are taken as root vectors, they generate Weyl reflections r!, 2, r> in the edges of the
first spherical triangle,

e —x— 2. &)E i=1,2,3. (25)
The product r2r! generates a positive rotation with angle 2oy and fixpoint 3.
This rotation is an element of the adjoint representation Ad_ of SU(2) obtained
by conjugation with the element g, see equation (34). The rotation is of finite order
if the Coxeter condition 2, = 27 /ps, py integer, is fulfilled. We shall come back
later to the condition of finite order.

The mutual relations of the triple g,,g,,9; are determined by the angles in
the two dual triangles. These relations do not change if we conjugate all three
group elements with another fixed group element. To characterize the triple modulo
conjugation, we turn to the Fricke characters for SU(2). Discrete systems of traces
for matrices from SI(2, C) are known as Fricke characters [6]. For more recent work
on Fricke characters compare Horowitz [8] and for homomorphisms F, — Si(2, C)
Humphreys [9]. From the exponential parametrization we get

1(9192) = (€' &%) (26)
which determines the cosine of the arc corresponding to g;. Next we consider the
matrix a with entries a;; = (£*-¢’),7,j = 1,2,3. Here we get the identity

det(a) = 14+ 2(¢" - £)(€2- ENE - €N - (€1 - ) - (- &) - (8- ¢')?

(A
= = 3(tr(,0195) - 2). "
The right-hand part of this equation, expressed by traces by use of equation (26), is
due to Fricke and Klein [6]). This part is a trace identity which relates the trace of the
commutator K(g,,g,) to the traces of the three group elements g,,g¢,,9;. When
expressed in terms of the vectors §¢, it has a geometric content as it determines up to
a factor the square of the volume of the tetrahedron spanned by ¢!, €2, 3.

A homomorphism F, — SU(2),8U(1,1) is defined in terms of images of the
generators of Fy, @y — g, 2, — gy, it implies e — egy(ay, esy(r,1y- In the Fricke-
Klein geometry it determines a wipie g;,9,,93 = (g19;)~" and a corresponding
triangle £1,£2,¢3. Now we determine the transformations of the wriangles induced by
the three generators of ©,. The images of £!,£2,¢° under these generators may be
linearly expressed by these vectors and by their scalar products as

(€'¢*¢%) = (£'6*6°) D(p) (28)

with the result
[ 0 -1 0
D(P)= ~1 0 0]
| 2e(€2-£%) 2e(€%-8") 1

1 0 0
Dioc)= |0 -1 0
L0 2e(¢7:8%) 1

2¢(¢3-¢") 0 1
D(U) = 0 1 0f. (29)
-1 00
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Hete the number ¢ takes the value ¢ = 1 for SU(2). The transformations of equation
(29) have a simple geometric interpretation since the vectors are permuted, inverted
or reflected according to equation (25). When multiplying these transformations in
each step one must transform the scalar products in each step. By use of equation
(26), the transformations of these scalar products become recursive trace maps. To
show that these transformations represent homomorphisms from ¢,, one must verify
for the images the defining relations of the generators of &, given by Niclsen and
by Magnus [12]. All three generators in equation (29) have a determinant £1 and
preserve det{a). Hence by equation (27) the volume of the tetrahedron spanned by
&1, 82,83 is a geometric invariant under the transformations induced by ®,. We shall
apply these transformations to the Fibonacci system in section 7.

4, Fricke-Klein geometry of SU(1,1)

Similar results hold for SU(1,1). For the exponential parametrization we shall use
the basis

o] = oy 03 = —0, oF = ioy (30)

of equation (16). The scalar and vector product correspond to the metric of
SO(2,1, R), they are

(a-b) = ayb; + ayb; — azh,

(@ x b))y = (azb; — asb,)

(@ x b); = (aszby — a;b;)

(@ x b)y = ~(a;b; — a;3b;). (31)

These definitions yield the triple product of three vectors still in the form of a
determinant,

det(a,b,c) =(ax b)-c. (32)

The exponential parametrization reads

g=ﬂp(“agmd£)- (33)

The adjoint representation Ad, is defined by the linear transformation of the vector
7’ induced by conjugation,

g —9d'g7!
' — (Ad,n')

3
(Ad,n)i = (Ad);m}. (34)

i=1
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The adjoint representation yields a homomorphism from SU(1,1) to SO(2,1, R 1)
which is two-to-one since Ad, = Ad_ and orthochronous, that is obeys (Ad )y > 1.
Consider triples of group elements from SU(1,1) obeying

g19203 = € (35

associate with them triples of vectors n!, %%, »n® through the exponential parametriza-
tion, and define the reciprocal triple bl,2, 5% by

b’l = fikl("?k b4 ﬂi). (36)

For these triples we obtain the following properties. For any triple of group elements
obeying equation (35), the three vectors b° are of two types: (i) all space-like,
(b - b*) > G or (ii) all dme-like, (b* - b*) < 0. If we define in these two cases

&= by Je(bi - b) 1

€ =1 37)

the triples ¢!,£2,¢% determine points and triangles on a space-like unit hyperboloid
or on & single time-like unit hyperboloid respectively. The arcs on the hyperboloids
are always on intersections with a plane through the origin. We obtain the trace
result

%tr(glgz) = (¢! - €%). (38)

Proof. TFor the first part we use the fact that elements of the adjoint representation
may be generated by pairs of reflections. With the vectors b we associate the
reflections

i — =20z b)) b)), (39)

We require that the products (r'r?),(r?r®),(r*r!) generate elements of the
orthochronous part of SO(2,1, R). This condition yields the restriction (&' - b!)(b?-
b*) > 0 and similar relations for all the pairs. From the action of (r'r?) &
S0(2,1, R 1) on b* according to equation (39) we obtain for the (hyperbolic) cosine
of twice the group parameter

(87 (r1rPb)) (87 - b1) 7 = (=14 2(b" - B)P((B" - H1Y(07 - B%)) )

(40)
= e(-1+2(¢" - €1)7).
If the absolute value of the expression on the left of this equation is in the range
{0, 1), it determines the cosine of twice a rotation angle. If it is in the range (1, c0),
it determines the hyperbolic cosine of twice a hyperbolic angle. The result given in
equation (38} is obtained by an explicit computation for all representative triples. Case
(if) with € = —1 applies if and only if o - ' = L,jn* - 07| < 1, 4,5 =1,2,3, i # j.
The time-like vectors £¢ are all found on a single hyperboloid. Case (i) with € = 1
applies in all other cases. 0
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For the matrix a with entries a,; = (& - ¢/) one finds
det(a) = e(1+2(£" - €2)(&%- )& - &) — (&' &Y - (&) - (& - &)
= —Hr(9,9195) - 2)

which is a trace identity and has a similar geometric interpretation as in the case of
SU(2).

The transformations of the triangles induced by Nielsen’s generators of F, are
given again by equation (29), preserve the geometric invariant det{a) of equation
(41), but have the metric of SO(2,1, R) and the values ¢ = %1 for types (i) and (ii)
respectively. The vectors £¢ are permuted, inverted or reflected according to equation
(39). We turn now to the relation between the group SU(1,1) and the Schridinger
equation.

‘1)

5. Transfer and scattering matrices

The one-dimensional Schrodinger equation may be written as
dz
aﬁ’ﬁ(m) = —v(z)¥(z) “42)

v(e) = ZHE = V(2)). @43)

With 9(zx) = ¥(z),¥»(z) 1= dy:(z)/dz one obtains the first-order system of
linear differential equations

=[] = [ o [53] L

This system is canonical with the Hamiltonian H = 1(y} + vy?), but for general
v = v(z) it corresponds to an oscillator with time-dependent frequency. The transfer
matrix defined by the equations

] = e |40 “
T(z,z)=e (46)

obeys the same differential equation with respect to z as the column vector formed
from v,(z),¥,(x). Since the matrix in equation (44) is traceless, the transfer matrix
is unimodular and, for a real choice of the two functions, belongs to Si(2, R). For an
interval with V = 0 and with E = (k% /2Zm}k?, the transfer matrix may be taken as

- n_ | cosk(z—=z') k7 lsink(z-2z')
Tu(m’w)__[—k‘sink(.r—x’) cosk(xix’) ] “7

We convert from this real standing wave to a complex running wave picture by
transforming the states and the transfer matrix with the matrix

o= 31t 510E 2]
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The new form of the transfer matrix we write as 7 := RT R-!, it is complex and
belongs to the Lie group SU(1,1) = RSI(2, R)R"!, a complex equivalent form of
SI(2, R). For V =Q one obtains

1y = [expik(z - 2 ’
cr*’(w,m)—[exp‘ (&= exp(-ik(z—m'))]' ®

The general transfer matrices will now admit the description and classification given
in section 2 for the elements of SU(1,1).

Suppose that the potential V'(x) is non-zero only in a finite interval say (0, c)
on R,, and consider the transfer matrix 7T on this interval. Given in the interval
(—00,0) the two free solutions exp(+tikz) with complex amplitudes, the transfer
matrix determines the amplitudes of the two free solutions exp(Lik(z — c)) in the
interval {c,o0). It follows that the scattering matrix S, which describes scattering from
the left and from the right, is determined by T. We also refer to Borland [4] for
this relation. To write the explicit connection we apply to T the Gauss factorization,
compare Barut and Raczka [3], given by

T= [; %] (50)

1 r]ft © 1 0] _Jt-rt~l1 t-ir
‘[0 1”0 t'l}[ml 1]"‘[ —lt-1 t-l] 1)
which yields the relations

-1 -1

-1 r=A =X T, (52)

t=X

Here, ) is always invertible. The Gauss factors do not beiong to SU(1,1). Now it is
easy to show that

rli)=l] =1 ®

s0 that I, are the reflection and transmission amplitudes for scattering from the left,
and r, ¢ are reflection and transmission amplitudes for scattering from the right. The
scattering matrix becomes

_ [texp(—ike) rexp(=2ike)

This matrix is unitary due to the fact that T € SU(1,1). The phase factors are
required by the asymptotic form of the free states assumed in scattering, they ensure
that V = 0 implies S = e. Computation of the scattering matrix for a product of
transfer matrices yields the star product of S-matrices defined by Redheffer [13]. The

o . . . +-1
transmission coefficient for scattering from the leftis t = A
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6. Fibonacci systems

The discrete Fibonacci system has the basic iterative equation.

" H(zy) = " Hmy}o™ (), ¢ 7)) = 79, B(;) = w2, (35)
which yields upon inversion
¢" H(z3h) = ¢" Nz} (27 ). (56)

The physical model will arise by associating with the words formed from z, =z,
products of transfer matrices and thus determines a homomorphism T : F, —
SU(1,1) or &, — SU(2). We shall first treat properties which apply to both groups.
It suffices to specify the map x, — T(z,) = T},2; — T(2;) = T, and to use
T(wyw,) = T(w)T(w;). We use the short-hand notation T, = T(¢"~!(x)).
Using this homomorphism and adding the matrix expressions corresponding to
equations (55) and (56) one finds

Top+ Tty = Tost(To + T1). 57
If now one defines three unimodular 2 x 2 matrices
(X,Y,Z}n)=(X(n),Y(n),Z(n)) = (Tp_2Trno1,Tn) (58)

one gets the recursive 12-dimensional system

X Y
(Y)(n+1)=(z )(n). (59)
Z Y(Z+ 271 - X!

We decompose any unimodular matrix as
M=S+A,A=M-1tu(M)e tr(A) =0 S=M- A, (60

Note the following decoupling properties of the discrete dynamical system. The S-
part of the system decouples and becomes equivalent to a system of traces. The three
coefficients in the A-part couple only to the S-part. By the theorem of Nielsen, the
Fibonacci system has the improper matrix invariant

K =z zyzy 'zl (61)
For the dynamical system, it proves convenient to introduce
T3 1= TyT,. (62)

We use the decomposition T = S + A and write T} := T(x;} = 5; + A;. Then one
finds for the commutator

T(KE)Y=8+4
S = —4513283 + 2(8151 + SZSZ + 3353) — &
A= 44413233 —_ Z(S]Al - SzAz + S3A3). (63)
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In the notation of the dynamical system, one obtains for the commutator

T(e™(K)) = (X + X ) (n) = (Y + YY) Z + Z71)(n)) XF!(n)
+ (Y + Y DN()YH(n) +(Z + Z7)(n) ZF!(n) —e. (64)

Again, this commutator decouples into an S-part and an A-part whose coefficients
couple only to the S-part. In view of equation (60}, the S-part of equation (63)
relates the traces. It can be interpreted in terms of the Fricke-Klein geometry of
sections 3 and 4, equations (27) and (41) and leads to a geometric invariant of the
system. The A-part has alternating signs due to the improper invariance.

We turn to SU(1,1) to illustrate the decoupling of the full system and write
down the iterative equations for the diagonal element A of the tramsfer matrix and
its improper invariant:

AX) ACY)
(A(Y))(n+1)= (P\(Z) _ _ )(n)
AMZ) (MZ)+2MZ2)MY) - MX)

MEY = (A4 N(X)— (A + N+ N ZWNX)
+ (A +XYIMY)+ X ZY N+ X)(2) - 1. (65)

The improper invariant part transforms in the iteration according to
AMK) = AK) = A(K)....

From the map equation (54) to the scattering matrix, the diagonal element X
determines the forward scattering from the Fibonacct string.

In the discrete Fibonacci system, the transfer matrix is obtained on chains of
length increasing with the Fibonacci numbers. We now show that the continuous
Schrédinger equation for the transfer matrix can be rewritten as a continuous 12-
dimensional dynamical system such that the discrete dynamical system appears in an
exact relation to the continuous one. To this end we write the equation of motion
for the transfer matrix in the form

0 1
—-u(x) 0

T(z,z) =e. 67)

-&%T(m,m") = W{(z)T(z,z') W(z)=R [ ] R-! (66)

We take the two intervals on the line with length 1, 7 respectively. If these intervals
carty fixed values of the potential, and if the sequence of intervals is generated
through equation (55), this sequence vields the symmetry

V(iz+ )= V(z) 0z L (68)

The same symmetry applies t0 v(x) and to the matrix W(x). For the transfer matrix
it follows from this symmetry and the equations of motion equation (66) that

T(r™1, ™) = T(+*-1,0). (69)
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Let us introduce a new real variable » and define

X(2) =T(r?z,72)
Y{(z)=T(rz,0)
Z(z) = T(7%2,0) = X(2)Y(2). (70)

Using the equations of motion for T(z,2’) and its inverse T-!(z,2’) = T(=',z),
one obtains for the three matrices X,Y, Z the equations of motion of a continuous
dynamical system:

d

dz

X(2) = T*W(r22) X(z) — X(2)TW(r2)
;—ZY(z) = rW(rz)Y(2)
%Z(z) = W (r2)Z(2). (71)

For the discrete values z = ™, it follows from equation (68) that

X{t™) = T(r™t2, ) = T(+",0)
Y (") = T(r"+1,0)
Z(r™) = T(+"+2,0) = X(r")Y(77). (72)

For these value of z, the three matrices are seen to coincide with the matrices
X(n+4+1),Y(n+1),Z(n + 1) of the discrete dynamical Fibonacci matrix system.
We conclede that the matrices of the continuous system must run, for z = =7,
through the values of the discrete system. In view of the restriction to SU(1,1),
both systems have nine (group) parameters. The discrete dynamical system has the
improper commutator invariant which provides a three-dimensional (Poincare-like)
section for the continuous systern. Note that we get an exact discrete dynamics on the
three-dimensional sections.

Finally we copsider a particular form of the transfer matrices for the Fibonacci
chain. We assume that, on both cells, the same potential with transfer matrix T'(¢,0)
is followed by two intervals with potential equal to zero and with transfer matrices
T%(1,¢€), T'( 1, €). The commutator becomes

K(T%1, )T, T%r,&)T)) = T°(1, ) K(T, T( - 1,0))(T*(e, 1) (73)

and so is equivalent to the commutator of the free transfer matrix for an interval of
length = — 1 with the transfer matrix for the potential. From equation (49) the first
matrix obeys T9(T — 1,0) = e for k(7 — 1) = mn,m € Z. At these periodic points
with respect to the wavenumber k, the commutator has the value K = e and the
trace i tr(K) = 1. For all other values of k we have, in the classification of equation
(19), T%(r — 1,0) € C7 so that from equation (19) A € C§ or C{. It follows that
1tr(K) > 1 and, for differentiable dependence of T on k, that the periodic zeros of
the invariant are quadratic minima. These properties can be seen in the computed
values of the invariant / = }(tr(K) — 2) for the special case where T represents
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a é-potential of strength ¢ and hence belongs to the class type CY. For this case,
studied in more detail in Baake et af [1], the table in equation (19) shows that there
are no points K = e except the ones periodic in k. The explicit value of the invariant
becomes

I = (wsink(r —1))* w=qf2k. (74)

The implications for the electron states and spectra on this and on generalized
Fibonacci systems are treated in Baake et af [1].

7. The Fibonacci system in Fricke-Klein geometry

An alternative geometric representation of the Fibonacci system is offered by use of
the Fricke—Klein geometry. We start with the Fibonacci system represented in SU(2).
For three group elements ¢y, 9,,9; = 9,9, We have g g,9;" = e. We wish to use
for this new triple the old dual vectors £!,£%,£° given in section 3. For this purpose
we keep the same dual vectors but reverse the orientation of the arc between £! and
£2. With this interpretation we get a correspondence

To1 = Toci T = Gnit = Gn19a — AET1E7¢"H). (75)
The Fibonacci system described by the powers ¢™ now generates a sequence
of dual triangles on the sphere, spanned by £"~!,¢", &7+l This sequence of
vectors is determined by writing ¢ = P o /. By combining the transformations
D(P), D(U) from equation (29) and rearranging one finds for the present triples
the transformation law

00 -1
(erlgngmt) = (€2 %) |1 0 0 nz4 (76)
0 1 2¢(¢"-£"2)

with initial values £2,£3,¢£% = ¢1. From this equation one determines for the scalar
products the rule

(€™t EM) = —e(€"T ) H (€ ER)(Em T
(g =) npd

which for € = 1 is equivalent to the recursive trace map of SU(2). In the new
equations for the Fibonacci matrix system, the recursive computation employs only
the mutual relations of matrices, independently of conjugation transformations applied
to the initial group elements. The volume of the tetrahedron spanned by the three
vectors is a geometric invariant and is, through equation (27), directly related to the
trace of the commutator in the matrix system. A special case arises if the two initial
group elements g,,g, belong to a finite subgroup H of SU(2). Clearly then the
orbits under the Fibonacci system must become periodic, with the period bounded by
the order of H.

For the Fibonacci system in the Fricke~Klein geometry of SU(1,1) we find, under
the conditions given in section 4, exactly the same relations equations (76) and (77),

n
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but with the scalar products now corresponding to SU(1,1). The types (i) and (ii)
have ¢ = £1. Equation (77) together with equation (38) yields the recursive trace
map. There are iwo different types of orbits: (i) if all three vectors £* are space-
like, the system of triangles runs on the single unit hyperboloid in the space-like
region; (ii) if all three vectors ¢ are time-like, the system runs on a single unit
hyperboloid in the time-like region. In this case, the vectors n* are all space-like.
The system has the geometric invariant given by equation (41). If the two initial
group elements belong to one of the discrete subgroups specified by Fricke and
Klein [6], we expect particular properties of the orbits under the Fibonacci system.
Again, the propagation of the triangles is independent of conjugation transformations.
The geometric transformations for generalized Fibonacci systems and in fact for any
automorphism from @, may be generated from the transformations equation (29).
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